
Collision Posteriors on Graphs with
Expensive-to-Evaluate Edges

Brian Hou, Sanjiban Choudhury, Gilwoo Lee, Matt Barnes, Siddhartha S. Srinivasa
Paul G. Allen School of Computer Science & Engineering, University of Washington

Email: {bhou, sanjibac, gilwoo, mbarnes, siddh}@cs.washington.edu

Abstract—Collision checking is a computational bottleneck
in motion planning, requiring lazy algorithms that explicitly
reason about when to perform this computation. Typically, such
algorithms only check edges on the current shortest path to
minimize the number of edges evaluated. However, they fail to
exploit a key structure: the results of collision checking are highly
correlated, and few checks can provide information about many
configurations. We present strategies to learn and exploit collision
correlations in order to reduce the checks required to compute
the optimal collision-free path. On structured environments,
leveraging these correlations reduces the number of collision-
checked edges by an average of 11%.

I. INTRODUCTION

Sampling-based strategies for motion planning operate by
sampling from the continuous search space of all possible
robot configurations to form a discrete graph (or roadmap),
where vertices are robot configurations and edges represent
simple movements between them [7]. To compute a collision-
free path from an initial configuration to the goal, an algorithm
must determine which edges of the graph the robot can traverse
without colliding with obstacles in its environment. A common
strategy for collision checking an edge is to discretize and
check whether any configuration is in collision; edge checking
is therefore typically one to two orders of magnitude more
computationally expensive than configuration checking [6].

To mitigate this bottleneck, lazy motion planning algorithms
defer collision evaluations between two configurations until
that edge is potentially along the optimal path [3, 6, 5]. These
planning algorithms maintain two sets of edges: evaluated
edges (either VALID or INVALID) and unevaluated edges
(optimistically assumed to be VALID). When deciding be-
tween several unevaluated candidate edges, edge-evaluation
heuristics can focus collision checks on edges that have high
probability of collision and quickly invalidate them.

Our key insight is that edge labels are highly correlated
in real-world environments, enabling few edge evaluations
to provide information about many edges. These correla-
tions arise due to spatial distribution of obstacles or due
to configuration-to-workspace mapping. Thus, edge-evaluation
strategies should consider past edge evaluations as they decide
which edges to evaluate in the future.

In this work, we examine a simple approach for learning
collision posterior distributions from a dataset of previous
planning problems. As edges are evaluated, these learned
posteriors can continuously predict edge collision probabil-
ities for the remaining unevaluated edges. Integrating these

Fig. 1: Edges evaluated by LazySP using the proposed POS-
TERIORFAILFAST selector. The algorithm returns the optimal
path (blue) without evaluating most edges in the graph (black).
Expensive collision checks have been focused on edges that
are in collision (red), rather than edges that are collision-free
(green). Obstacles (gray) are for visualization only.

learned predictions with a lazy motion planner enables the
algorithm to reason about which edges to prioritize during
collision-checking. This collision posterior approach reduces
the collision checks required to compute the optimal collision-
free path by an average of 11%.

II. RELATED WORK

Planning with expensive collision-checking is a well-studied
problem in motion planning. We focus on the paradigm of
lazy motion planning, where an edge is only evaluated if
it is potentially along the optimal path. Lazy-PRM* and
Lazy-RRG* are asymptotically-optimal anytime lazy motion
planning algorithms which only evaluate an edge if it would
result in a shorter path [6]. The LazySP class of algorithms
continuously re-solve the shortest path problem assuming that
unevaluated edges are collision-free while lazily eliminating
edges as they are evaluated to be in collision, replanning until
the optimal collision-free path is found [3]. Lazy Receding
Horizon A* balances the LazySP tradeoff between planning
time and collision-checking time [8]. These algorithms de-
scribe several heuristics for edge evaluation, but typically do
not reason about the correlation between edge evaluations.
However, as we will discuss in Section IV, they can be



extended to this setting when there are examples of past
planning problems to learn from.

Several machine learning approaches have been proposed
to predict the validity of unevaluated edges. Esposito and
Wright [4] argue that the adjacency matrix for a roadmap can
be decomposed into the sum of a low-rank matrix and a sparse
error matrix, and propose a convex optimization procedure
to recover the unknown entries. This method predicts edge
validities for a fully-connected graph from a proportionally
small set of randomly observed entries, while we focus on
predicting edge validities for a fixed graph that is much less
connected. Pan et al. [9] use approximate nearest-neighbor
queries to efficiently perform probabilistic collision checking
for configurations and edges based on previously evaluated
configurations. This approach only incorporates the validity of
nearby points in configuration space to predict edge validities;
however, points that are far apart in configuration space may
still be informative, e.g. if they are close in task space.
Furthermore, neither approach can learn from past planning
problems to improve their predictions.

Many motion planning algorithms leverage edge collision
probabilities to search more efficiently. Haghtalab et al. bound
the number of edge evaluations of the LazySP class of
algorithms in this probabilistic setting and prove that LazySP
is asymptotically optimal [5]. POMP is an anytime motion
planning algorithm that leverages edge collision probabilities
to quickly find a collision-free path with few edge evaluations,
then balances path length and path collision probability to
find shorter paths [1]. The BISECT algorithm uses Bayesian
active learning to find a feasible path from a library of paths,
computing priors on edge collision probabilities from offline
training examples [2].

III. BACKGROUND: LAZY SHORTEST PATH ON GRAPHS
WITH EXPENSIVE-TO-EVALUATE EDGES

In the shortest path problem, we assume that we are given a
graph G = (V,E) and desired start and goal vertices vs, vg ∈
V . Traversing each edge e in the graph incurs a cost of w(e).
The optimal path from the start to goal p∗(vs, vg) minimizes
the total cost of edges in the path.

When edges in the graph are expensive to evaluate, we
only assume knowledge of lower bounds for each edge weight
ŵ(e) in the set of edges E (e.g. Euclidean distance). The
exact weight w(e) is unknown until the edge is evaluated for
collisions: a collision-free edge has cost ŵ(e) and an edge in
collision has infinite cost. Thus, the resulting shortest path in
the graph with exact edge weights is collision-free. Since edge
evaluations are expensive, we wish to minimize the number
required to compute the shortest collision-free path.

We build on the LazySP framework proposed by Dellin and
Srinivasa [3]. LazySP maintains an optimistic graph where
an edge is assumed to be collision-free (i.e. edge weight is
exactly ŵ(e)) until it has been evaluated to be in collision. It
computes the shortest path on the optimistic graph, then selects
an edge along this candidate path to evaluate according to an
edge-selector function. If an edge along the candidate path

Fig. 2: Training examples from the BugTrap environment
distribution. The top-left figure is the graph that is shared by
all environments in the distribution. Edges that are in collision
with the BugTrap obstacle (gray) have been omitted.

is evaluated to be in collision, a new candidate is proposed
based on the updated optimistic graph. If all edges along a
candidate path are evaluated to be collision-free, then it must
be the optimal path p∗(vs, vg). LazySP assumes that each edge
evaluation takes the same time and edge evaluations dominate
computation time relative to solving shortest path queries. The
choice of edge selector has a drastic effect on the number of
edges that LazySP evaluates.

IV. PLANNING WITH COLLISION POSTERIORS

Let P (φ) be the distribution of environments that the plan-
ner will be tasked with solving. Our objective is to compute an
edge-selector function for this distribution that minimizes the
number of edges evaluated as LazySP computes the shortest
path. Although we do not have direct access to P (φ), there is
a dataset of samples {φi} to learn from. We divide this into
two subtasks: learning edge collision posteriors from example
environments and leveraging those approximate posteriors to
inform edge evaluation.

A. Learning Edge Collision Posteriors

In our dataset, each distribution over environments P (φ)
is associated with a single explicit graph G = (V,E). For
each environment in the dataset, we precompute the collision
statuses for every edge in the graph; different subsets of edges
will be in collision depending on the arrangement of obstacles
in each environment.

We model the validity of each edge as a Bernoulli random
variable Ei. Each environment φ assigns a binary value (either
in collision or collision-free) to each Ei. Our goal is to
estimate the posterior distribution P (E \Eeval|Eeval), where
Eeval is the set of evaluated edges. In this work, we use the
Naı̈ve Bayes assumption that the posterior can be factored as

P (Ei = ei|Eeval) ∝ P (Ei = ei)
∏

ej∈Eeval

P (Ej = ej |Ei = ei)



B. Edge Collision Posterior Selectors

Given a set of evaluated edges and a candidate shortest
path, a selector can compute the posterior probability that
each unevaluated edge is in collision, then select an edge to
evaluate accordingly. In this work, we adopt a fail-fast strategy
of selecting the edge with the highest posterior probability of
being in collision. By focusing on edges with high collision
probability, our POSTERIORFAILFAST selector quickly invali-
dates candidate paths.

V. EXPERIMENTS

We evaluate these strategies on a variety of 2D motion-
planning problems [2]. We focus on these simply for ease
of visualization; the approaches we propose depend on the
number of edges in the graph, and do not have an explicit
dependence on the dimension of the configuration space.
Figure 2 shows examples from the BugTrap dataset.

We compare three LazySP edge selectors. FORWARD selects
the unevaluated edge that is closest to the start of the candidate
path [3]. PRIORFAILFAST selects the edge with the high-
est prior probability of collision [2]. Our proposed selector,
POSTERIORFAILFAST, predicts the posterior distribution with
Naı̈ve Bayes and selects the edge with the highest posterior
probability of collision. PRIORFAILFAST and POSTERIOR-
FAILFAST leverage the same dataset (800 environments) to
estimate collision probabilities.

Before initiating lazy motion planning (and edge evaluation)
on the graph, vertices are eagerly evaluated for collisions. If
a vertex is in collision, then each edge incident on that vertex
is also marked as in collision. These observed edge statuses
are part of the initial problem state, and can be leveraged by
POSTERIORFAILFAST when it predicts the remaining edges.

Figure 3 compares the POSTERIORFAILFAST selector di-
rectly with the other two selectors on the test set (200
environments). Each point corresponds to one environment,
where the coordinates are the number of edges evaluated by
each selector. Points are colored according to the selector
which evaluated fewer edges on each problem; green points in-
dicate problems on which POSTERIORFAILFAST outperforms
FORWARD and PRIORFAILFAST, respectively.

POSTERIORFAILFAST outperforms PRIORFAILFAST on
88% of planning problems, evaluating an average of 11%
fewer edges. The number of edges evaluated by POSTERI-
ORFAILFAST ranges from 46% to 116% of the edges that
PRIORFAILFAST evaluates (Figure 4). Although POSTERIOR-
FAILFAST may not maximize the usefulness of the collision
posterior, this strategy does not seem to evaluate many more
edges when it performs worse than PRIORFAILFAST.

VI. DISCUSSION AND FUTURE WORK

We have presented an approach for learning an edge col-
lision posterior model from data and combining that model
with a lazy motion planning algorithm. We have relied on
the completeness of the planning algorithm while boosting
performance on average using learning. The fail-fast edge
selectors that we have considered in this work are effective,

Forward

P
o
st

e
r
io

r
F
a
il

fa
st

PriorFailfast

Fig. 3: Pairwise selector comparison on BugTrap environ-
ments. Each point corresponds to a planning problem, where
the (x, y)-coordinates are the number of edges evaluated with
that selector. Points are colored by which selector evaluated
fewer edges on each problem: POSTERIORFAILFAST (ours,
green), PRIORFAILFAST (blue), or FORWARD (gray).

0

20

40

60

80

100

120

140

E
d

ge
E

va
lu

at
io

n
s

PriorFailfast

PosteriorFailfast

Fig. 4: Edge evaluation results for LazySP on BugTrap envi-
ronments (lower is better). Results are ordered by increasing
number of edge evaluations performed by the PRIORFAILFAST
selector as a proxy for problem difficulty.

but they suffer from the same myopia of concentrating on the
current candidate path. Reasoning about future candidate paths
that are also being eliminated may further narrow the gap to
a Bayes-optimal edge selector.

We believe that this approach can scale effectively to
higher-dimensional configuration spaces since the models are
dependent on the number of edges in the graph, rather than
the dimensionality of the configuration space. Validating this
hypothesis on more challenging problems (e.g., manipulators)
is a major direction of our future work.

While we have focused on the single-source shortest path
problem, we believe that these posteriors will also be valuable
for other motion planning problems (e.g., near-optimal path
planning, feasible path identification). In future work, we hope
to explore some of these problems.

ACKNOWLEDGEMENTS

Brian Hou is partially supported by NASA Space Technol-
ogy Research Fellowships (NSTRF). Gilwoo Lee is partially
supported by Kwanjeong Educational Foundation. This work
was partially funded by the National Institute of Health
R01 (#R01EB019335), National Science Foundation CPS
(#1544797), National Science Foundation NRI (#1637748),
the Office of Naval Research, the RCTA, Amazon, and Honda.



REFERENCES

[1] S. Choudhury, C. Dellin, and S.S. Srinivasa. Pareto-
optimal search over configuration space beliefs for any-
time motion planning. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2016.

[2] S. Choudhury, S. Javdani, S.S. Srinivasa, and S. Scherer.
Near-optimal edge evaluation in explicit generalized bino-
mial graphs. In Advances in Neural Information Process-
ing Systems, 2017.

[3] C. Dellin and S.S. Srinivasa. A unifying formalism for
shortest path problems with expensive edge evaluations
via lazy best-first search over paths with edge selectors.
In International Conference on Automated Planning and
Scheduling, 2016.

[4] J.M. Esposito and J.N. Wright. Matrix completion as a
post-processing technique for probabilistic roadmaps. In
Workshop on the Algorithmic Foundations of Robotics,
2016.

[5] N. Haghtalab, S. Mackenzie, A.D. Procaccia, O Salzman,
and S.S. Srinivasa. The Provable Virtue of Laziness
in Motion Planning. In International Conference on
Automated Planning and Scheduling, 2018.

[6] K. Hauser. Lazy collision checking in asymptotically-
optimal motion planning. In IEEE International Confer-
ence on Robotics and Automation, 2015.

[7] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[8] A. Mandalika, O. Salzman, and S.S. Srinivasa. Lazy Re-
ceding Horizon A* for Efficient Path Planning in Graphs
with Expensive-to-Evaluate Edges. In International Con-
ference on Automated Planning and Scheduling, 2018.

[9] J. Pan, S. Chitta, and D. Manocha. Faster sample-
based motion planning using instance-based learning. In
Workshop on the Algorithmic Foundations of Robotics,
2012.


	Introduction
	Related Work
	Background: Lazy Shortest Path on Graphs with Expensive-to-Evaluate Edges
	Planning with Collision Posteriors
	Learning Edge Collision Posteriors
	Edge Collision Posterior Selectors

	Experiments
	Discussion and Future Work

