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time horizon of the problem. Let the conÞguration space
trajectory represented by the pairx : [0, T] ! X and
u : [0, T] ! U be a mapping from time to conÞguration and
control respectively. The trajectories are subject to nonlinear
constraintsúx(t) = f (x(t), u(t)) . Let the functionw : X !
W be the workspace projection of a conÞguration state

In the optimization problem, the start state isx0 and the

desired end state isx
f

. Let J (x(t)) =
TR

0
c(x(t))dt be a line

integral cost. Letc
f

(x(T), x
f

) be a terminal cost function.
The problem we wish to solve is as follows

minimize
x(t),u(t)

J (x(t)) + c
f

(x(T), x
f

)

subject to x(0) = x0

úx(t) = f (x(t), u(t))

(1)

Problem (1) is fairly generic. However we wish to solve
a special case whereJ (x(t)) is only dependent on the
workspace component and has the following structure

J (x(t)) = J
obs

(x(t)) + � J
smooth

(x(t)) (2)

where � is a weighting parameter. Similarly
c
f

(x(t), x(T)) = 1
2 " w(x(T)) # w(x

f

)" .
J
obs

(x(t)) is an obstacle cost function

J
obs

(x(t)) =

TZ

0

c
obs

(w(x(t)))

����
d
dt

w(x(t))

���� dt

wherec
obs

(w(x(t))) is inversely proportional to the squared
distance to obstacle (Refer to [10] for details)

J
smooth

(x(t)) penalizes high velocities in workspace

J
smooth

(x(t)) =
T
2

TZ

0

����
d
dt

w(x(t))

����
2

dt

The following assumptions are made for the class of
problems we look at in this paper

• The workspace dimensionw is lower than the conÞgu-
ration space dimensionn.

• Since the cost function is only dependent on workspace,
the dynamicsf (.) is the only term that deal with the
full conÞguration space.

• The dynamicsf (.) are that of a mobile robot.f (.)
satisÞes properties such as global controllability and
controllers can be derived that can track feasible ref-
erence trajectories.

III. B ACKGROUND: DIFFERENTIAL DYNAMIC

PROGRAMMING

Differential dynamic programming (DDP) [1] is a discrete-
time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efÞcient than full NewtonÕs
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.

IV. A PPROACH: DYNAMICS PROJECTIONFILTER

(a)

Fig. 2: Dynamics Projection Filter Overview

In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses

a controller to track this trajectory and the outputs the
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a special case whereJ (x(t)) is only dependent on the
workspace component and has the following structure
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2 " w(x(T)) # w(xf )" .
Jobs(x(t)) is an obstacle cost function
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a dynamically feasible conÞguration space trajectory. DPF
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The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
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time horizon of the problem. Let the conÞguration space
trajectory represented by the pairx : [0, T] ! X and
u : [0, T] ! U be a mapping from time to conÞguration and
control respectively. The trajectories are subject to nonlinear
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The following assumptions are made for the class of
problems we look at in this paper

• The workspace dimensionw is lower than the conÞgu-
ration space dimensionn.

• Since the cost function is only dependent on workspace,
the dynamicsf (.) is the only term that deal with the
full conÞguration space.

• The dynamicsf (.) are that of a mobile robot.f (.)
satisÞes properties such as global controllability and
controllers can be derived that can track feasible ref-
erence trajectories.

III. B ACKGROUND: DIFFERENTIAL DYNAMIC

PROGRAMMING

Differential dynamic programming (DDP) [1] is a discrete-
time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efÞcient than full NewtonÕs
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.
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In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses
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Despite DDP being much more efÞcient than full NewtonÕs
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to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
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In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses
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time horizon of the problem. Let the conÞguration space
trajectory represented by the pairx : [0, T] ! X and
u : [0, T] ! U be a mapping from time to conÞguration and
control respectively. The trajectories are subject to nonlinear
constraintsúx(t) = f (x(t), u(t)) . Let the functionw : X !
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The following assumptions are made for the class of
problems we look at in this paper

• The workspace dimensionw is lower than the conÞgu-
ration space dimensionn.

• Since the cost function is only dependent on workspace,
the dynamicsf (.) is the only term that deal with the
full conÞguration space.

• The dynamicsf (.) are that of a mobile robot.f (.)
satisÞes properties such as global controllability and
controllers can be derived that can track feasible ref-
erence trajectories.
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Differential dynamic programming (DDP) [1] is a discrete-
time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efÞcient than full NewtonÕs
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.
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In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses

a controller to track this trajectory and the outputs the

time horizon of the problem. Let the conÞguration space
trajectory represented by the pairx : [0, T] ! X and
u : [0, T] ! U be a mapping from time to conÞguration and
control respectively. The trajectories are subject to nonlinear
constraintsúx(t) = f (x(t), u(t)) . Let the functionw : X !
W be the workspace projection of a conÞguration state
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Problem (1) is fairly generic. However we wish to solve
a special case whereJ (x(t)) is only dependent on the
workspace component and has the following structure
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The following assumptions are made for the class of
problems we look at in this paper

¥ The workspace dimensionw is lower than the conÞgu-
ration space dimensionn.

¥ Since the cost function is only dependent on workspace,
the dynamicsf (.) is the only term that deal with the
full conÞguration space.

¥ The dynamicsf (.) are that of a mobile robot.f (.)
satisÞes properties such as global controllability and
controllers can be derived that can track feasible ref-
erence trajectories.
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Differential dynamic programming (DDP) [1] is a discrete-
time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efÞcient than full NewtonÕs
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.
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In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses

a controller to track this trajectory and the outputs the
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time horizon of the problem. Let the conÞguration space
trajectory represented by the pairx : [0, T] ! X and
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control respectively. The trajectories are subject to nonlinear
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The following assumptions are made for the class of
problems we look at in this paper

• The workspace dimensionw is lower than the conÞgu-
ration space dimensionn.

• Since the cost function is only dependent on workspace,
the dynamicsf (.) is the only term that deal with the
full conÞguration space.

• The dynamicsf (.) are that of a mobile robot.f (.)
satisÞes properties such as global controllability and
controllers can be derived that can track feasible ref-
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time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efÞcient than full NewtonÕs
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.
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In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses
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time horizon of the problem. Let the conÞguration space
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control respectively. The trajectories are subject to nonlinear
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In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
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!"##$%&'(()*#($
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Derive surrogate constrained workspace optimization
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Project workspace trajectory to conÞguration space
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minimize

! (" ))
Jobs(! (" )) + # Jsmooth (! (" ))

subject to ! (0) = ! 0

! (1) = ! f

C! ! b

(1)

minimize

! (" ))
J (! i ) + " J

subject to ! (0) = ! 0
! (1) = ! f

C! ! b

(2)

1

Create a virtual closed loop system to track the workspace trajectory

Virtual 
Closed Loop

 System

Track
Trajectory

Output is
feasible

conÞguration trajectory traced out by the system. To provide
guarantees about the output, the Þrst component required
is a control-Lyapunov function (CLF) that stabilizes around
a feasible workspace trajectory. Since the controller can
observe all states, has a perfect model and is free from any
disturbance, approaches such as feedback linearization and
backstepping can be applied [11], [12], [13].

Let the workspace trajectory be! : [0, 1] ! Rw . A
control-Lyapunov stabilized trajectory Þrstly requires the
existence of a feedback controlu = K (x, ! , " ) where
x 2 Rd is the conÞguration space coordinate of the robot,
" is the index of the workspace trajectory. It also requires
the deÞnition of index dynamicṡ" = ! (x, ! , " ). Careful
selection of these functions can ensure a functionV (x, ! , " )
to satisfy the Lyapunov criteria when! is dynamically
feasible. If x 2 X ! implies perfect tracking, the Lyapunov
criteria is V (x, .) > 0, ˙V (x, .) < 0,8x 2 X \ X ! and
V (x, .) = 0,8x 2 X ! (globally asymptotic stable version).

A further local exponential stability is also required, i.e,
!
!
!
!
dV (., " )

d"

!
!
!
! > #V (., " ), # > 0, V (.) < Vmax .

where the rate of exponential stability# determines how fast
convergence occurs. This property will be used to guarantee
decay properties of the CLF. A detailed derivation of these
properties for a Þxed wing UAV is provided in SectionV.

The outputx(t) = DPF(! ) is given by

"
x(t)
" (t)

#
=

"
x(0)
0

#
+

t$

0

"
f (x(t), K (x(t), ! , " (t)))

! (x(t), ! , " (t))

#
dt

(3)

In the scope of this work, we consider! to be approxi-
mated by a set of workspace samples at equal discretization
" " : ! ⇡ (q1, q2, . . . , qn )

T 2 Rn⇥w , with q0 and qn+1 the
Þxed starting and ending points of the trajectory. This will
facilitate concrete expressions on bounds that are parameter-
ization dependent. However, the method remains valid for
other parameterizations, such as splines.

Under the assumption that the linear segments between
waypoints are dynamically feasible (there existsu 2 U
which allows perfect tracking) , the Lyapunov functionV (.)
converges in the straight line portion of! . However, at every
waypoint it increases by" V > 0 because of the angle
change at the waypoint. The more jagged! is the more
the cumulative effect of" V will be. The maximumV (.)
at anytime determines how much deviationx(.) has from! .
We Þrst establish that under certain assumptions aboutV (.),
a bounded Lyapunov value implies a bounded intersegment
deviation.

Proposition 1 (Bounded Intersegment Deviation). Given
a desired bound on the Lyapunov function V (x, ! , " ) 
Vmax ,8x, " 2 DPF(! ), the intersegment deviation is also
bounded, i.e.

%
1 +

(qi �qi ! 1 )
T (qi �qi +1 )

kqi �qi ! 1kkqi �qi +1 k

&
 $max .

Proof. Let $i =

%
1 +

(qi �qi ! 1 )
T (qi �qi +1 )

kqi �qi ! 1kkqi �qi +1 k

&
be the interseg-

ment deviation andVi be the Lyapunov value at waypointi .

Let the inßation of Lyapunov value be" Vi on transitioning
to the segment leading to waypointi + 1. We deÞne the
relation " Vi  h(Vi , $i ), where a speciÞc form ofh(.)
depends on the form ofV (.) as we show in SectionV. Let
l = mini kqi � qi+1k. The exponential stability# implies
that alongl, the Lyapunov decays fromV to V e�" l .

We now Þnd the largest$i that guaranteesVi+1  Vi .

Vi+1  Vi

(Vi + " Vi )e�" l  Vi

" Vi  Vi (e" l � 1)

h(Vi , $i )  Vi (e" l � 1)

$i  h�1
(Vi (e" l � 1))

(4)

whereh�1
(.) is an abuse of notation to imply that the relation

is invertible.
We assume thath�1

(.) monotonically increases withVi

so that the tightest bound is achieved whenVi�1+ " Vi�1 =

Vmax and decays toVi = Vmax e�" l .

$i  h�1
(Vmax e�" l

(e" l � 1))

$i  h�1
(Vmax (1� e�" l

))

(5)

We now prove that bounded Lyapunov value implies
x(t) = DPF(! ) is within bounded suboptimality of! (by
abuse of notationJ (.) serves a dual role of cost evaluation
of ! andx)

Proposition 2 (Bounded Suboptimality). Given a desired
bound on the Lyapunov function V (x, ! , " )  Vmax ,8x, " 2
DPF(! ), J (x)  (1 + %)J (! )

Proof. (Sketch) The workspace deviation is bounded,
kw(x(t))� ! (" )k  dmax since V (x, ! , " )  Vmax . Un-
der the assumption that DPF always ensures"̇ > 0, the
total length is within bounded inßationkw(x(t))k  (1 +

&l ) k! (" )k, where&l is an inßation constant derived from the
dynamics constraints. This implies a bounded smoothness
cost factor,Jsmooth (x)  (1 + %s)Jsmooth (! ) where %s is
a sub-optimality bound. The functioncobs(.) is assumed
to be Lipschitz continuous which givesJobs(x)  (1 +

%o)Jobs(! ).

Since the projected trajectory is not guaranteed to be
locally optimal, executing a DDP as a post-processing step
results in local optimality.

B. Workspace Optimization

The workspace optimization problem is to optimizeJ (! )
subject to constraints at each waypoint$i stated in propo-
sition 1. While a wide variety of approaches exist to solve
this problem [2], [14], we use CHOMP [7]. CHOMP opti-
mizes the same objective functional but has a lot of added
advantages such as using a steepest descent direction with
respect to a Riemannian metric that allows fast convergence
as well as invariance to parameterization. By selecting a

time horizon of the problem. Let the conÞguration space
trajectory represented by the pairx : [0, T] ! X and
u : [0, T] ! U be a mapping from time to conÞguration and
control respectively. The trajectories are subject to nonlinear
constraintsúx(t) = f (x(t), u(t)) . Let the functionw : X !
W be the workspace projection of a conÞguration state

In the optimization problem, the start state isx0 and the

desired end state isx
f

. Let J (x(t)) =
TR

0
c(x(t))dt be a line

integral cost. Letc
f

(x(T), x
f

) be a terminal cost function.
The problem we wish to solve is as follows

minimize
x(t),u(t)

J (x(t)) + c
f

(x(T), x
f

)

subject to x(0) = x0

úx(t) = f (x(t), u(t))

(1)

Problem (1) is fairly generic. However we wish to solve
a special case whereJ (x(t)) is only dependent on the
workspace component and has the following structure

J (x(t)) = J
obs

(x(t)) + � J
smooth

(x(t)) (2)

where � is a weighting parameter. Similarly
c
f

(x(t), x(T)) = 1
2 " w(x(T)) # w(x

f

)" .
J
obs

(x(t)) is an obstacle cost function

J
obs

(x(t)) =

TZ

0

c
obs

(w(x(t)))

����
d
dt

w(x(t))

���� dt

wherec
obs

(w(x(t))) is inversely proportional to the squared
distance to obstacle (Refer to [10] for details)

J
smooth

(x(t)) penalizes high velocities in workspace

J
smooth

(x(t)) =
T
2

TZ

0

����
d
dt

w(x(t))

����
2

dt

The following assumptions are made for the class of
problems we look at in this paper

• The workspace dimensionw is lower than the conÞgu-
ration space dimensionn.

• Since the cost function is only dependent on workspace,
the dynamicsf (.) is the only term that deal with the
full conÞguration space.

• The dynamicsf (.) are that of a mobile robot.f (.)
satisÞes properties such as global controllability and
controllers can be derived that can track feasible ref-
erence trajectories.

III. B ACKGROUND: DIFFERENTIAL DYNAMIC

PROGRAMMING

Differential dynamic programming (DDP) [1] is a discrete-
time second order trajectory optimization method that uses
quadratic approximations of the cost function and dynam-
ics, but also features quadratic convergence. It involves an
iterative backward and forward pass along the trajectory. In
the backward pass, a quadratic approximation of the value
function and a resultant linear control policy is computed. In

the forward pass, the control policy is applied to get a new
trajectory.

Despite DDP being much more efÞcient than full NewtonÕs
method on the trajectory, it has two bottlenecks in speed.
Firstly, the integration granularity in the forward step needs
to be very high - otherwise the integration errors accumulate
along the trajectory driving the states at the end out of the
linearization trust region. Secondly, the control update can be
unbounded if the approximation matrices are ill-conditioned
- this happens when the control change is orthogonal to the
cost function change. Small steps are required to exit this
condition. Moreover the method is prone to get stuck in bad
local minima because the dynamics might locally restrict a
large jump.

IV. A PPROACH: DYNAMICS PROJECTIONFILTER

(a)

Fig. 2: Dynamics Projection Filter Overview

In this section, we present our novel approach - the
Dynamics Projection Filter (DPF). DPF is a nonlinear
projection operator that projects a workspace trajectory to
a dynamically feasible conÞguration space trajectory. DPF
guarantees a Þxed suboptimality bound in cost increase for
this projection subject to constraints that the workspace
trajectory must satisfy. This property is used to solve the
planning problem in (1) using a set of procedures as shown
in Fig. 2. A workspace trajectory is optimized with respect
to the cost function in (2) subject to the afore-mentioned
constraints. Then DPF is applied to this trajectory to obtain
a conÞguration space trajectory. The conÞguration space
trajectory is further optimized using DDP (SectionIII ).

The main advantage to this approach is that most of the
optimization is performed without explicitly dealing with the
nonlinear dynamics constraints. The workspace optimization
is low-dimensional, at a coarser granularity than full state
space optimization and also eliminates the need to repeatedly
linearize the constraints and integrate the dynamics. Even
though DDP is a much more general approach, we exploit
the assumptions made in the problem statement to come up
with a computationally cheaper solution.

A. Lyapunov Stabilized Workspace Trajectory
The DPF accepts a workspace trajectory as input, uses

a controller to track this trajectory and the outputs the
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